In conjunction with print.summary.slmfit(), the output looks similar to output from R's standard lm() function.

# S3 method for slmfit
summary(object, ...)

Arguments

object

is an object generated from slmfit() of class slmfit.

...

further arguments passed to or from other methods.

Value

a list with

  • model formula

  • a table of fixed effects estimates and associated standard errors

  • estimated spatial covariance parameter estimates

  • residuals

  • generalized r-squared.

Examples

data(exampledataset) ## load a toy data set
slmobj <- slmfit(formula = counts ~ pred1 + pred2, data = exampledataset,
xcoordcol = 'xcoords', ycoordcol = 'ycoords', areacol = 'areavar')
summary(slmobj)
#> 
#> Call:
#> counts ~ pred1 + pred2
#> 
#> Residuals:
#>     Min      1Q  Median      3Q     Max 
#> -16.086  -9.120  -4.596   4.963  28.594 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)   26.104      4.465   5.847   <2e-16 ***
#> pred1          2.055      6.065   0.339    0.737    
#> pred2          0.214      1.913   0.112    0.912    
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Covariance Parameters:
#>              Exponential Model
#> Nugget            2.323211e-04
#> Partial Sill      1.543624e+02
#> Range             8.240060e-01
#> 
#> Generalized R-squared: 0.00413886